社会化推荐聚合

阅读时间 5 分钟,快速阅读仅需 2 分钟。

之所以写这篇文章,是因为郑昀又做了一个新的玩聚,玩聚SR。我更愿意称之为“社会化推荐聚合”。在简单试用玩聚SR并向郑昀了解了一些情况后,我认为社会化推荐聚合是一种FriendFeed的演变。如果信息源足够多,聚合出来的文章将是非常精彩的。社会化推荐聚合才刚开始。

什么是社会化推荐聚合

要了解这个概念,首先要说说什么是社会化推荐。

Web2.0的一个特征就是分享,你可以将一个有趣的网页分享到Digg,Delicious,Reddit等推荐性网站;也可以在Google Reader、鲜果/抓虾热文里推荐;你还可以在Twitter、饭否等微博客上分享这篇文章;甚至,你在博客上链接这篇文章……

这一切动作都可以称之为“社会化推荐”。

社会化推荐有个致命的缺陷,各个服务之间是独立存在的

1、你可能不会在Delicious里看到Digg里最热门的文章

2、可能你的Twitter好友同时分享了一篇Reddit里的热文

3、Google Reader的Share功能很好,但一般情况下只有你的好友会使用到你的分享

……

将这些所有的社会化推荐合并起来如何?这样热门内容不就不会遗漏了吗?听起来不错,这就是标题所说的“社会化推荐聚合”。

为什么需要社会化推荐聚合?

为什么每个网站都有热门推荐?

为什么每个书签网站都有热门书签?

为什么人们会关注08年十大新词

因为我们潜意识里有这么一种想法:

被推荐得多的,肯定是好的。这就好像面对两家你都没有去过的餐馆,一间没有人,一间人山人海。最终你可能选择了人多的那间,因为你潜意识里认为更多人选择的肯定更好吃。

社会化推荐聚合就是为了迎合这样一种心理。即便这样的心理在一定程度上并不可取,但事实上它存在着。

所以,我们需要热点内容,需要社会化推荐聚合。

如何实现社会化推荐聚合

或许你正在使用FriendFeed,它可以聚合你所有“有RSS输出的Web2.0服务”。

只要在FriendFeed的基础上做一点点的改进,就可以形成社会化推荐聚合了。如何做?

1、将每个FF帐号里的RSS内容进行处理,提取里面所有的URL,并将Tinyurl等缩短网址解析出来,这样就得到了一个推荐链接库。

2、编写一种算法,将推荐链接库里的不相关内容去掉,比如:google.com,显然我们不希望它出现在热文里。

3、将URL聚合后使用一种算法R(t,n),R是与时间(t)和推荐数(n)相关的函数,从而计算出URL的不同分值。

4、最后,按R值来进行文章排行。

这就是社会化推荐聚合的基本模型。

玩聚SR

首先做到这一创意的是玩聚SR。有兴趣了解玩聚SR的文章排行公式的朋友可以到这里查看

玩聚SR并不是大范围的社会化推荐聚合,因为它只是聚合一些在互联网上比较活跃的、与IT相关的人士的社会化推荐行为

这些人包括Keso,曹增辉等等。非常荣幸我也在列。

玩聚SR将这些活跃web2.0用户的社会化推荐聚合起来,目前主要是Google Reader Share Items和Twitter,进而通过第三点所说的算法R(t,n),计算出每个URL的分值。

与一般的热文不同,玩聚SR还将推荐者的Twitter信息与文章结合起来,犹如看一群人在做文章点评。

基于Google Reader Share的聚合

社会化推荐服务中一个很重要的角色是Google Reader,全球份额最高的RSS阅读器。因此要做社会化推荐聚合必须先将GR里的Shared items聚合起来。

玩聚SR并不是第一个做到聚合GR分享项目的人,在我印象中,最早想到这一创意的是Readburner,中文领域第一个做GR分享聚合的是FeedzShare

有了基于GR的聚合,要实现社会化推荐就变得更简单了。

玩聚SR可以做得更好的地方

话题过于狭窄

目前玩聚SR过于局限于IT领域,信息源基本都是来自IT人士。虽然在网上有Web2.0行为的大多数是IT人士或比较Geek的网民,但话题过于狭窄必将阻碍其发展。

信息源过少

话题过于狭窄的另一个原因是信息源太少,在我查看的时候,我发现有很大一部分的分享者是我认识的,显然这是由于信息源太少的缘故。

分类查看

目前玩聚SR只能查看热文,无法分类查看。这个分类包括:作者、类别、标签。

这从技术上应该不难实现,Readburner可以基于博客作者分类查看。

商业价值?

就目前来看,玩聚SR还是一个实验性质的项目。说得难听点,就是个个人玩具而已,网站的话题都是制作者所关注的领域,并没有注意大众的偏好。所以,玩聚SR要发展,必须寻找其商业价值。

社会化推荐聚合的前途

由于人们对热点的追求,社会化推荐聚合必将流行起来,必将和FriendFeed一样风靡整个web2.0界,这是一个伟大的创意。玩聚SR做了先行者,后面我们一定能看到跟随者。

让我们拭目以待。

34 条评论

  1. […] 从上面的介绍可以看出,Google Wave是一个既有整合,又有创新的交流平台。我曾经在“社会化推荐聚合”里提到,整合是互联网的一个趋势,这不但体现在信息的集中处理上,还可以应用到一个大平台上。Google踏出了第一步。 […]

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注